Birdblog

A conservative news and views blog.

Name:
Location: St. Louis, Missouri, United States

Wednesday, December 28, 2005

Thermodynamics and Darwinism

The American Spectator Online has a tremendous article on Darwinism and Thermodynamics by a mathematics professor named Granville Sewelle. He makes the case (far more eloquently) for which I was so severely condemned by P.Z. Myers and his Mujihadeen in my AT piece The Case Against Darwin.

He states:

The discovery that life on Earth developed through evolutionary "steps," coupled with the observation that mutations and natural selection -- like other natural forces -- can cause (minor) change, is widely accepted in the scientific world as proof that natural selection -- alone among all natural forces -- can create order out of disorder, and even design human brains with human consciousness. Only the layman seems to see the problem with this logic. In a recent Mathematical Intelligencer article ("A Mathematician's View of Evolution," 22, number 4, 5-7, 2000), after outlining the specific reasons why it is not reasonable to attribute the major steps in the development of life to natural selection, I asserted that the idea that the four fundamental forces of physics alone could rearrange the fundamental particles of nature into spaceships, nuclear power plants, and computers, connected to laser printers, CRTs, keyboards and the Internet, appears to violate the second law of thermodynamics in a spectacular way.

In other words, despite energy being present as well as the materials necessary, my cat will not defecate an ipod. (Shoot, I`d be amazed if he could drop an A.M. radio.) This is more likely to happen than life being spontaneously generated. (I have yet to find so much as a non-functioning radio tube in my catbox.)

He continues:

Anyone who has made such an argument is familiar with the standard reply: the Earth is an open system, it receives energy from the sun, and order can increase in an open system, as long as it is "compensated" somehow by a comparable or greater decrease outside the system. S. Angrist and L. Hepler, for example, in Order and Chaos (Basic Books, 1967), write, "In a certain sense the development of civilization may appear contradictory to the second law.... Even though society can effect local reductions in entropy, the general and universal trend of entropy increase easily swamps the anomalous but important efforts of civilized man. Each localized, man-made or machine-made entropy decrease is accompanied by a greater increase in entropy of the surroundings, thereby maintaining the required increase in total entropy."

According to this reasoning, then, the second law does not prevent scrap metal from reorganizing itself into a computer in one room, as long as two computers in the next room are rusting into scrap metal -- and the door is open. In Appendix D of my new book, The Numerical Solution of Ordinary and Partial Differential Equations, second edition, (John Wiley & Sons, 2005) I take a closer look at the equation for entropy change, which applies not only to thermal entropy but also to the entropy associated with anything else that diffuses, and show that it does not simply say that order cannot increase in a closed system. It also says that in an open system, order cannot increase faster than it is imported through the boundary. According to this equation, the thermal order in an open system can decrease in two different ways -- it can be converted to disorder, or it can be exported through the boundary. It can increase in only one way: by importation through the boundary. Similarly, the increase in "carbon order" in an open system cannot be greater than the carbon order imported through the boundary, and the increase in "chromium order" cannot be greater than the chromium order imported through the boundary, and so on.

In these simple examples, I assumed nothing but heat conduction or diffusion was going on, but for more general situations, I offered the tautology that "if an increase in order is extremely improbable when a system is closed, it is still extremely improbable when the system is open, unless something is entering which makes it not extremely improbable." The fact that order is disappearing in the next room does not make it any easier for computers to appear in our room -- unless this order is disappearing into our room, and then only if it is a type of order that makes the appearance of computers not extremely improbable, for example, computers. Importing thermal order will make the temperature distribution less random, and importing carbon order will make the carbon distribution less random, but neither makes the formation of computers more probable.


Don`t miss the rest of this; it is pure gold!

Weblog Commenting and Trackback by HaloScan.com